Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase.

نویسندگان

  • Tomohiro Hayakawa
  • Tokuko Haraguchi
  • Hiroshi Masumoto
  • Yasushi Hiraoka
چکیده

Heterochromatin protein 1 (HP1) plays an important role in heterochromatin formation. Three subtypes of HP1, namely HP1alpha, beta, and gamma, have been identified in humans. In this study, using yellow fluorescent protein (YFP) fusion constructs, we examined the intracellular localization of human HP1 subtypes during the cell cycle. During interphase, all three HP1 subtypes were localized to centromeric heterochromatin and to promyelocytic leukemia (PML) nuclear bodies. Different preferences, however, were observed among the subtypes: during interphase HP1beta localized most preferentially to centromeric heterochromatin, whereas HP1alpha and gamma were more preferentially localized to PML nuclear bodies. During metaphase, only HP1alpha, was localized to the centromere. We thus determined which molecular domains of HP1 were necessary for their intracellular localization. Our results showed that the C-terminal fragment (amino acid residues 101-180) of HP1alpha was necessary for localization to the metaphase centromere and the N-terminal fragment (amino acid residues 1-76) of HP1beta was necessary for localization to the interphase centromere. Interestingly, simultaneous observations of residues 101-180 of HP1alpha and residues 1-76 of HP1beta in living HeLa cells revealed that during late prophase, the HP1beta fragment dissociated from centromeric regions and the HP1alpha fragment accumulated in centromeric regions. These results indicate that different specific regions of human HP1alpha and HP1beta mediate localization to metaphase and interphase centromeric regions resulting in association of different subtypes of HP1 with the centromere at different times during the cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells

Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passeng...

متن کامل

Heterochromatin Protein 1 (HP1) Proteins Do Not Drive Pericentromeric Cohesin Enrichment in Human Cells

Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required f...

متن کامل

Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes

Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner ...

متن کامل

Localization and organization of protein factors involved in chromosome inheritance in Dictyostelium discoideum.

Heterochromatin protein 1 (HP1) proteins are highly conserved heterochromatin components required for genomic integrity. We have previously shown that the two HP1 isoforms expressed in Dictyostelium, HcpA and HcpB, are mainly localized to (peri-)centromeric heterochromatin and have largely overlapping functions. However, they cause distinct phenotypes when overexpressed. We show here that these...

متن کامل

Distinct Cytoplasmic and Nuclear Fractions of Drosophila Heterochromatin Protein 1: Their Phosphorylation Levels and Associations with Origin Recognition Complex Proteins

The distinct structural properties of heterochromatin accommodate a diverse group of vital chromosome functions, yet we have only rudimentary molecular details of its structure. A powerful tool in the analyses of its structure in Drosophila has been a group of mutations that reverse the repressive effect of heterochromatin on the expression of a gene placed next to it ectopically. Several genes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2003